# Example that does a batch of three 2D transformations of size 4 by 5.
import torch
import pytorch_fft.fft as fft
A, zeros = torch.randn(3,4,5).cuda(), torch.zeros(3,4,5).cuda()
B_real, B_imag = fft.fft2(A_real, A_imag)
fft.ifft2(B_real, B_imag) # equals (A, zeros)
B_real, B_imag = fft.rfft2(A) # is a truncated version which omits
# redundant entries
reverse(torch.arange(0,6)) # outputs [5,4,3,2,1,0]
reverse(torch.arange(0,6), 2) # outputs [4,5,2,3,0,1]
expand(B_real) # is equivalent to fft.fft2(A, zeros)[0]
expand(B_imag, imag=True) # is equivalent to fft.fft2(A, zeros)[1]
https://github.com/locuslab/pytorch_fft.git
답글삭제