makeROCData.py
#!/usr/bin/python
import os
import re
from scipy import ndimage, misc
import torch
import torch.nn as nn
#from __future__ import print_function
import argparse
from PIL import Image
import torchvision.models as models
import skimage.io
from torch.autograd import Variable as V
from torch.nn import functional as f
from torchvision import transforms as trn
# define image transformation
centre_crop = trn.Compose([
trn.ToPILImage(),
trn.Scale(256),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
images = []
for root, dirnames, filenames in os.walk("/home/kerb/Documents/data_bm_0913/test/benign/"):
for filename in filenames: # for all files
if re.search("\.(jpg|jpeg|png)$", filename):
filepath = os.path.join(root, filename) # path + filename
print(filepath)
#image = ndimage.imread(filepath, mode="L") # image read
img = skimage.io.imread(filepath)
#image_resized = misc.imresize(image, (256, 256)) #resize
x = V(centre_crop(img).unsqueeze(0), volatile=True).cuda()
model = models.__dict__['resnet34']()
model = torch.nn.DataParallel(model).cuda()
model = torch.load('modelFT_BM60.pth')
logit = model(x)
#print(logit)
h_x = f.softmax(logit).data.squeeze()
f1= open('rocdata.csv', 'a')
f1.write("1" + "," + str(h_x[0]) + "\n")
f1.close()
images2 = []
for root, dirnames, filenames in os.walk("/home/kerb/Documents/data_bm_0913/test/malware"):
for filename in filenames: # for all files
if re.search("\.(jpg|jpeg|png)$", filename):
filepath = os.path.join(root, filename) # path + filename
print(filepath)
#image = ndimage.imread(filepath, mode="L") # image read
img = skimage.io.imread(filepath)
#image_resized = misc.imresize(image, (256, 256)) #resize
x = V(centre_crop(img).unsqueeze(0), volatile=True).cuda()
model = models.__dict__['resnet34']()
model = torch.nn.DataParallel(model).cuda()
model = torch.load('modelFT_BM60.pth')
logit = model(x)
#print(logit)
h_x = f.softmax(logit).data.squeeze()
f1= open('rocdata.csv', 'a')
f1.write("0" + "," + str(h_x[1]) + "\n")
f1.close()
import os
import re
from scipy import ndimage, misc
import torch
import torch.nn as nn
#from __future__ import print_function
import argparse
from PIL import Image
import torchvision.models as models
import skimage.io
from torch.autograd import Variable as V
from torch.nn import functional as f
from torchvision import transforms as trn
# define image transformation
centre_crop = trn.Compose([
trn.ToPILImage(),
trn.Scale(256),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
images = []
for root, dirnames, filenames in os.walk("/home/kerb/Documents/data_bm_0913/test/benign/"):
for filename in filenames: # for all files
if re.search("\.(jpg|jpeg|png)$", filename):
filepath = os.path.join(root, filename) # path + filename
print(filepath)
#image = ndimage.imread(filepath, mode="L") # image read
img = skimage.io.imread(filepath)
#image_resized = misc.imresize(image, (256, 256)) #resize
x = V(centre_crop(img).unsqueeze(0), volatile=True).cuda()
model = models.__dict__['resnet34']()
model = torch.nn.DataParallel(model).cuda()
model = torch.load('modelFT_BM60.pth')
logit = model(x)
#print(logit)
h_x = f.softmax(logit).data.squeeze()
f1= open('rocdata.csv', 'a')
f1.write("1" + "," + str(h_x[0]) + "\n")
f1.close()
images2 = []
for root, dirnames, filenames in os.walk("/home/kerb/Documents/data_bm_0913/test/malware"):
for filename in filenames: # for all files
if re.search("\.(jpg|jpeg|png)$", filename):
filepath = os.path.join(root, filename) # path + filename
print(filepath)
#image = ndimage.imread(filepath, mode="L") # image read
img = skimage.io.imread(filepath)
#image_resized = misc.imresize(image, (256, 256)) #resize
x = V(centre_crop(img).unsqueeze(0), volatile=True).cuda()
model = models.__dict__['resnet34']()
model = torch.nn.DataParallel(model).cuda()
model = torch.load('modelFT_BM60.pth')
logit = model(x)
#print(logit)
h_x = f.softmax(logit).data.squeeze()
f1= open('rocdata.csv', 'a')
f1.write("0" + "," + str(h_x[1]) + "\n")
f1.close()
댓글
댓글 쓰기