[PyTorch] testAccuacy in CPU
import torch
import torch.nn as nn
#from __future__ import print_function
import argparse
from PIL import Image
import torchvision.models as models
import skimage.io
from torch.autograd import Variable as V
from torch.nn import functional as f
from torchvision import transforms as trn
# define image transformation
centre_crop = trn.Compose([
trn.ToPILImage(),
trn.Scale(256),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
filename=r'/Users/dti/Desktop/PyTorch4testAccuracy/hymenoptera_data/test/bees/1.jpg'
img = skimage.io.imread(filename)
x = V(centre_crop(img).unsqueeze(0), volatile=True)
model = models.__dict__['resnet18']
model = torch.load('model5.pth')
logit = model(x)
print(logit)
h_x = f.softmax(logit).data.squeeze()
print(h_x)
import torch.nn as nn
#from __future__ import print_function
import argparse
from PIL import Image
import torchvision.models as models
import skimage.io
from torch.autograd import Variable as V
from torch.nn import functional as f
from torchvision import transforms as trn
# define image transformation
centre_crop = trn.Compose([
trn.ToPILImage(),
trn.Scale(256),
trn.CenterCrop(224),
trn.ToTensor(),
trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
filename=r'/Users/dti/Desktop/PyTorch4testAccuracy/hymenoptera_data/test/bees/1.jpg'
img = skimage.io.imread(filename)
x = V(centre_crop(img).unsqueeze(0), volatile=True)
model = models.__dict__['resnet18']
model = torch.load('model5.pth')
logit = model(x)
print(logit)
h_x = f.softmax(logit).data.squeeze()
print(h_x)
댓글
댓글 쓰기