

import matplotlib.pyplot as plt
import numpy as np
from skimage import data
from skimage.util import img_as_ubyte
from skimage.filters.rank import entropy
from skimage.morphology import disk
# First example: object detection.
noise_mask = 28 * np.ones((128, 128), dtype=np.uint8)
noise_mask[32:-32, 32:-32] = 30
noise = (noise_mask * np.random.random(noise_mask.shape) - 0.5 *
noise_mask).astype(np.uint8)
img = noise + 128
entr_img = entropy(img, disk(10))
fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(8, 3))
ax0.imshow(noise_mask, cmap=plt.cm.gray)
ax0.set_xlabel("Noise mask")
ax1.imshow(img, cmap=plt.cm.gray)
ax1.set_xlabel("Noisy image")
ax2.imshow(entr_img)
ax2.set_xlabel("Local entropy")
fig.tight_layout()
# Second example: texture detection.
image = img_as_ubyte(data.camera())
fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(10, 4), sharex=True,
sharey=True,
subplot_kw={"adjustable": "box-forced"})
img0 = ax0.imshow(image, cmap=plt.cm.gray)
ax0.set_title("Image")
ax0.axis("off")
fig.colorbar(img0, ax=ax0)
img1 = ax1.imshow(entropy(image, disk(5)), cmap=plt.cm.jet)
ax1.set_title("Entropy")
ax1.axis("off")
fig.colorbar(img1, ax=ax1)
fig.tight_layout()
plt.show()
댓글
댓글 쓰기