8월, 2016의 게시물 표시

Demo of #HamShield FM Beacon #hamradio

이미지

HamShield Library Showcase

이미지

Portrait made with thread!

이미지
실로 초상화 그리기 ... Wow, is this a kind of 2-Dimensional Fourier Transform?

Color Homomorphic Filtering

이미지

[Octave] Color Homomorphic Filtering

clear close all clc pkg load image I = imread('image16.jpg'); I = im2double(I); %figure(2);imshow(rgb2gray(I)) rr=I(:, :, 1); gg=I(:, :, 2); bb=I(:, :, 3); % Make Log I = log(1 + I); % mesh for H M = 2*size(I,1) + 1; N = 2*size(I,2) + 1; sigma = 5; [X, Y] = meshgrid(1:N,1:M); centerX = ceil(N/2); centerY = ceil(M/2); gaussianNumerator = (X - centerX).^2 + (Y - centerY).^2; H = 0.7*exp(-gaussianNumerator./(2*sigma.^2)); H = 1 - H + 0.9; H = fftshift(H); % fft fo image rf = fft2(rr, M, N); gf = fft2(gg, M, N); bf = fft2(bb, M, N); % product rout = real(ifft2(H.*rf)); gout = real(ifft2(H.*gf)); bout = real(ifft2(H.*bf)); rout = rout(1:size(I,1),1:size(I,2)); gout = gout(1:size(I,1),1:size(I,2)); bout = bout(1:size(I,1),1:size(I,2)); % -1 rhm = exp(rout) - 1; ghm = exp(gout) - 1; bhm = exp(bout) - 1; cc(:,:,1)= rhm; cc(:,:,2)= ghm; cc(:,:,3)= bhm; subplot(1, 2, 1);imshow(I) subplot(1, 2, 2);imshow(cc)

Macbook + Stellarium + NexStar90GT

이미지
맥북으로 Goto 망원경 제어하기, 성공~!

스텔라리움에서 코동 제어하기

http://goodkook.blogspot.kr/2015/01/synchronize-telescope-goto-to-stellarium.html

Satellite Radio Tracking with Celestron SLT Mount

이미지
Goto 망원경의 마운트에 안테나를 달아서 통신위성을 추적해 최적의 라디오 시그널을 잡아내는 동영상.

파이썬으로 Local Entropy Mapping

이미지
import matplotlib.pyplot as plt import numpy as np from skimage import data from skimage.util import img_as_ubyte from skimage.filters.rank import entropy from skimage.morphology import disk # First example: object detection. noise_mask = 28 * np . ones (( 128 , 128 ), dtype = np . uint8 ) noise_mask [ 32 : - 32 , 32 : - 32 ] = 30 noise = ( noise_mask * np . random . random ( noise_mask . shape ) - 0.5 * noise_mask ) . astype ( np . uint8 ) img = noise + 128 entr_img = entropy ( img , disk ( 10 )) fig , ( ax0 , ax1 , ax2 ) = plt . subplots ( 1 , 3 , figsize = ( 8 , 3 )) ax0 . imshow ( noise_mask , cmap = plt . cm . gray ) ax0 . set_xlabel ( "Noise mask" ) ax1 . imshow ( img , cmap = plt . cm . gray ) ax1 . set_xlabel ( "Noisy image" ) ax2 . imshow ( entr_img ) ax2 . set_xlabel ( "Local entropy" ) fig . tight_layout () # Second example: texture detection. imag...

파이선으로 눈 인식하기: cv2

import cv2 import sys cascPath = sys . argv [ 1 ] faceCascade = cv2 . CascadeClassifier ( cascPath ) video_capture = cv2 . VideoCapture ( 0 ) while True : # Capture frame-by-frame ret , frame = video_capture . read () gray = cv2 . cvtColor ( frame , cv2 . COLOR_BGR2GRAY ) faces = faceCascade . detectMultiScale ( gray , scaleFactor = 1.1 , minNeighbors = 5 , minSize = ( 30 , 30 ), flags = cv2 . cv . CV_HAAR_SCALE_IMAGE ) # Draw a rectangle around the faces for ( x , y , w , h ) in faces : cv2 . rectangle ( frame , ( x , y ), ( x + w , y + h ), ( 0 , 255 , 0 ), 2 ) # Display the resulting frame cv2 . imshow ( 'Video' , frame ) if cv2 . waitKey ( 1 ) & 0xFF == ord ( 'q' ): break # When everything is done, release the capture video_capture . release () cv2 . destroyAllWindows ()

파이썬으로 Histogram matching 하기.

이미지
import numpy as np def hist_match ( source , template ): """ Adjust the pixel values of a grayscale image such that its histogram matches that of a target image Arguments: ----------- source: np.ndarray Image to transform; the histogram is computed over the flattened array template: np.ndarray Template image; can have different dimensions to source Returns: ----------- matched: np.ndarray The transformed output image """ oldshape = source . shape source = source . ravel () template = template . ravel () # get the set of unique pixel values and their corresponding indices and # counts s_values , bin_idx , s_counts = np . unique ( source , return_inverse = True , return_counts = True ) t_values , t_counts = np . unique ( template , return_counts = True ) ...

파이썬으로 Spectral Saliency Map 만들기

이미지
rom skimage import img_as_float from skimage . io import imread from skimage . color import rgb2gray from scipy import fftpack , ndimage , misc from scipy . ndimage import uniform_filter from matplotlib . pyplot as plt # Read image from file image = img_as_float ( rgb2gray ( imread ( '1.jpg' ))) image = misc . imresize ( image , 64.0 / image . shape [ 0 ]) # Spectral Residual fft = fftpack . fft2 ( image ) logAmplitude = np . log ( np . abs ( fft )) phase = np . angle ( fft ) avgLogAmp = uniform_filter ( logAmplitude , size = 3 , mode = "nearest" ) #Is this same a applying "mean" filter spectralResidual = logAmplit...