import librosa import librosa.display # Generate mfccs from a time series y, sr = librosa.load( '0acdb43dae5a7a66945bc44ee87ee67cd64f4e9dabf2817ab59ffe8bf9093778.wav' ) librosa.feature.mfcc(y=y, sr=sr) # array([[ -5.229e+02, -4.944e+02, ..., -5.229e+02, -5.229e+02], # [ 7.105e-15, 3.787e+01, ..., -7.105e-15, -7.105e-15], # ..., # [ 1.066e-14, -7.500e+00, ..., 1.421e-14, 1.421e-14], # [ 3.109e-14, -5.058e+00, ..., 2.931e-14, 2.931e-14]]) # Use a pre-computed log-power Mel spectrogram S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels= 128 , fmax= 8000 ) librosa.feature.mfcc(S=librosa.power_to_db(S)) # array([[ -5.207e+02, -4.898e+02, ..., -5.207e+02, -5.207e+02], # [ -2.576e-14, 4.054e...