dcGAN CNN architecture
kraken@devBox1:~/examples/dcgan$
kraken@devBox1:~/examples/dcgan$ python3 main.py --dataset folder --dataroot './data' --worker 16 --cuda --ngpu 2
Namespace(batchSize=16, beta1=0.5, cuda=True, dataroot='./data', dataset='folder', imageSize=64, lr=0.0002, manualSeed=None, ndf=64, netD='', netG='', ngf=64, ngpu=2, niter=3000, nz=100, outf='.', workers=16)
Random Seed: 1783
_netG (
(main): Sequential (
(0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU (inplace)
(6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU (inplace)
(9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(11): ReLU (inplace)
(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh ()
)
)
_netD (
(main): Sequential (
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): LeakyReLU (0.2, inplace)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(4): LeakyReLU (0.2, inplace)
(5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(7): LeakyReLU (0.2, inplace)
(8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(10): LeakyReLU (0.2, inplace)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
(12): Sigmoid ()
)
)
[0/3000][0/57] Loss_D: 1.9780 Loss_G: 7.6137 D(x): 0.6910 D(G(z)): 0.7167 / 0.0007
[0/3000][1/57] Loss_D: 0.3106 Loss_G: 7.1012 D(x): 0.9215 D(G(z)): 0.1827 / 0.0011
kraken@devBox1:~/examples/dcgan$ python3 main.py --dataset folder --dataroot './data' --worker 16 --cuda --ngpu 2
Namespace(batchSize=16, beta1=0.5, cuda=True, dataroot='./data', dataset='folder', imageSize=64, lr=0.0002, manualSeed=None, ndf=64, netD='', netG='', ngf=64, ngpu=2, niter=3000, nz=100, outf='.', workers=16)
Random Seed: 1783
_netG (
(main): Sequential (
(0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(2): ReLU (inplace)
(3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(5): ReLU (inplace)
(6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(8): ReLU (inplace)
(9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True)
(11): ReLU (inplace)
(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh ()
)
)
_netD (
(main): Sequential (
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): LeakyReLU (0.2, inplace)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True)
(4): LeakyReLU (0.2, inplace)
(5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True)
(7): LeakyReLU (0.2, inplace)
(8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True)
(10): LeakyReLU (0.2, inplace)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
(12): Sigmoid ()
)
)
[0/3000][0/57] Loss_D: 1.9780 Loss_G: 7.6137 D(x): 0.6910 D(G(z)): 0.7167 / 0.0007
[0/3000][1/57] Loss_D: 0.3106 Loss_G: 7.1012 D(x): 0.9215 D(G(z)): 0.1827 / 0.0011
댓글
댓글 쓰기