Ubuntu + Caffe + ImageNet
import numpy as np import matplotlib.pyplot as plt import sys caffe_root = '../' sys.path.insert(0, caffe_root + 'python') import caffe # Set the pathes of model definition, trained model and image file to be predicted MODEL_FILE = '../models/bvlc_reference_caffenet/deploy.prototxt' PRETRAINED = '../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' IMAGE_FILE = 'images/irish_terrier.jpg' # load classifier net = caffe.Classifier(MODEL_FILE, PRETRAINED, mean=np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1), channel_swap=(2,1,0), raw_scale=255, image_dims=(256, 256)) # net.set_phase_test() # net.set_mode_cpu() # load image file to be predicted input_image = caffe.io.load_image(IMAGE_FILE) # predict prediction = net.predict([input_image]) sorted_predict = sorted(range(len(prediction[0])),key=...